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Project Overview

• Improving MPI I/O performance

✦ Individual collective I/O operation

✦ Across multiple I/O operations

• Improving caching/prefecting at I/O servers

✦ Eliminate harmful prefetching and eviction

Wei-keng Liao, EECS Department, Northwestern University



Unique vs. Shared file I/O

• Two programming styles for parallel apps

• Unique-file I/O usually performs better

✦ No data consistency and cache coherence issues

✦ Problem with file management

• Shared-file I/O produces less files

✦ Easier for management, data are in canonical order

✦ File systems must enforce data atomicity and 
coherent cache
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MPI Collective I/O

• ROMIO uses the two-phase I/O strategy

✦ Communication phase

✴ Redistribute data among processes in a way the I/O 
phase is the least expensive

✦ I/O phase

✴ Fast when I/Os are large contiguous chunks of requests

• Can I/O phase perform like unique-file I/O?
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file space

start end

evenly partitioned

P0 P1 P2 P3

static cyclic stripe-based

P0 P1 P2 P3 P0 P1 P2 P3 P0

file system stripe size (lock granularity)

aligned with stripe boundaries

P0 P1 P2 P3
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File Locking Protocols
• Token-based -- GPFS

✦ A token holder has authority for granting further lock 
requests to its already-granted byte range

✦ Mercury, IBM IA-64 Linux, TeraGrid, NCSA

✦ Lock granularity == file stripe size

• Server-based -- Lustre

✦ Each server manages locks for the file stripes it stores

✦ Jaguar, Cray XT, ORNL

✦ Lock granularity == file stripe size
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ROMIO test  for collective I/O
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FLASH I/O
• I/O kernel of the FLASH 

application from University 
of Chicago

• I/O method: HDF5

✦ Each process writes 80 
32x32x32 arrays

✦ I/O amount increases as 
the number of MPI 
processes

• I/O pattern

✦ Non-interleaved among 
processes
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S3D I/O Pattern
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S3D I/O
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Summary I

• Token-based locking protocol -- GPFS
✦ Use file domains that align with stripe boundaries

• Server-based locking protocol -- Lustre
✦ Use static-cyclic partitioning method

✦ Choose cb_nodes to be a multiple of stripe width

• Communication phase becomes important
✦ Currently using MPI All-to-all and Isend/Irecv, they do not 

scale well beyond 1000 processes
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I/O Delegate

• Optimization considering multiple collective 
or independent I/O calls

• Allocate a separate group of compute nodes 
as I/O delegates
✦ Uses a small percentage (< 10 %) of additional resource

✦ Aggregate small requests to larger ones

✦ Rearrange data based on file system locking protocols

✦ Entire memory space can be used as collective buffer at 
delegates

Wei-keng Liao, EECS Department, Northwestern University



Collaborated File Caching

• A fully functional distributed, coherent cache 
system at the delegates

• Cache metadata management
✦ Metadata are cyclically distributed among all processes

✦ Lock protocol for metadata atomicity

• Caching policies
✦ Local: page eviction (least-recent used)

✦ Global: page migration (referred consecutively twice)

Wei-keng Liao, EECS Department, Northwestern University
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I/O Delegates are 10%
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Summary II

• I/O delegate is designed to improve multiple 
MPI I/O operations
✦ Small percentage of additional nodes provides significant 

I/O improvement

• Future work
✦ Integrate into two-phase I/O

✦ Incorporate the file domain partitioning methods

Wei-keng Liao, EECS Department, Northwestern University



Data Throttling and Pinning
• In prefetch throttling, one or more CPUs are (temporarily) prevented from 

issuing prefetch requests to reduce the number of harmful prefetches

• In data pinning, select data blocks brought to the memory cache by a CPU are 
marked as non-removable (i.e., pinned in the cache) for a certain period of time
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Fig. 3. Percentage improvements in total execution cycles
due to I/O prefetching (over the no-prefetch case). In each
application, the bars from left to right are for 1 through 16
clients.
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Fig. 4. Fraction of harmful prefetches. In each application, the
bars from left to right are for 1 through 16 clients.
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Fig. 5. Statistics collected at different points during the course of execution of our four applications. Each bar-chart shows a distribution of the harmful I/O
prefetches for the execution that uses 8 CPUs. (a) and (b) are from mgrid; (c) is from neighbor m; (d) and (e) are from cholesky; and (f) is from med. The
white bars indicate interesting patterns.

of harmful prefetches (more than 85%). The third pattern
– shown in (c) – is taken from one of the last epochs of
neighbor m, and demonstrates an entirely different behavior
than the previous two. In particular, here we observe that
one of the CPUs (P5) is the victim of most of the harmful
prefetches. The next two bar-charts in Figure 5 are taken from
cholesky and capture two representative behaviors (one from
the beginning of the application execution and one towards
the end). In (d), we observe two interesting patterns. First,
most of the harmful prefetches are issued by one of the CPUs
(P7), and second, among all CPUs, P5 is the one that is
affected most by the harmful I/O prefetches. The graph in
(e) indicates a more clustered behavior. Specifically, there are
a few CPUs which perform harmful prefetches that affect
another group of CPUs. Also, there is another group of CPUs
that are affected greatly by harmful I/O prefetches. Finally,
the last bar-chart (f) is taken from the execution of med and
shows that two CPUs (P2 and P5) are affected from most of
the harmful prefetches. We need to mention at this point that

the patterns shown in Figure 5 are not isolated, infrequently-
occurring patterns. They in fact occur very frequently during
the course of execution. For example, the first 13 epochs in
the beginning of the execution of mgrid exhibit similar pattern
to the one shown in (a). Similarly, 8 consecutive patterns in
cholesky are very similar to the one given in (d), and med
has many patterns similar to that shown in (f). Therefore, if
one could take advantage of these patterns during execution,
significant performance gains can be achieved. In the rest of
this paper, we present two optimization schemes that exploit
these harmful prefetch patterns, and quantify the performance
benefits they bring in our applications.

V. OUR SCHEMES

A. Prefetch Throttling and Data Pinning

Based on the discussion in the previous section, we propose
two schemes for improving the behavior of I/O prefetching:
“prefetch throttling” and “data pinning.” In this section, we
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Fig. 3. Percentage improvements in total execution cycles
due to I/O prefetching (over the no-prefetch case). In each
application, the bars from left to right are for 1 through 16
clients.
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Fig. 5. Statistics collected at different points during the course of execution of our four applications. Each bar-chart shows a distribution of the harmful I/O
prefetches for the execution that uses 8 CPUs. (a) and (b) are from mgrid; (c) is from neighbor m; (d) and (e) are from cholesky; and (f) is from med. The
white bars indicate interesting patterns.

of harmful prefetches (more than 85%). The third pattern
– shown in (c) – is taken from one of the last epochs of
neighbor m, and demonstrates an entirely different behavior
than the previous two. In particular, here we observe that
one of the CPUs (P5) is the victim of most of the harmful
prefetches. The next two bar-charts in Figure 5 are taken from
cholesky and capture two representative behaviors (one from
the beginning of the application execution and one towards
the end). In (d), we observe two interesting patterns. First,
most of the harmful prefetches are issued by one of the CPUs
(P7), and second, among all CPUs, P5 is the one that is
affected most by the harmful I/O prefetches. The graph in
(e) indicates a more clustered behavior. Specifically, there are
a few CPUs which perform harmful prefetches that affect
another group of CPUs. Also, there is another group of CPUs
that are affected greatly by harmful I/O prefetches. Finally,
the last bar-chart (f) is taken from the execution of med and
shows that two CPUs (P2 and P5) are affected from most of
the harmful prefetches. We need to mention at this point that

the patterns shown in Figure 5 are not isolated, infrequently-
occurring patterns. They in fact occur very frequently during
the course of execution. For example, the first 13 epochs in
the beginning of the execution of mgrid exhibit similar pattern
to the one shown in (a). Similarly, 8 consecutive patterns in
cholesky are very similar to the one given in (d), and med
has many patterns similar to that shown in (f). Therefore, if
one could take advantage of these patterns during execution,
significant performance gains can be achieved. In the rest of
this paper, we present two optimization schemes that exploit
these harmful prefetch patterns, and quantify the performance
benefits they bring in our applications.

V. OUR SCHEMES

A. Prefetch Throttling and Data Pinning

Based on the discussion in the previous section, we propose
two schemes for improving the behavior of I/O prefetching:
“prefetch throttling” and “data pinning.” In this section, we

5

!"#

!$

#

$

"#

"$

%#

%$

&#

&$

'#

()*+, -./01234 51+).6/*7( (1,

8
1*

9/
*(

:5
-1

;<(
=*

/>
1(

15
?;@

A
B

!"#$%

!&"#$%'

Fig. 3. Percentage improvements in total execution cycles
due to I/O prefetching (over the no-prefetch case). In each
application, the bars from left to right are for 1 through 16
clients.

!

"

#!

#"

$!

$"

%!

&'()* +,-./012 3/)',4-(5& &/*

6
(7

+8
)-

39
-:

9;
7(

&
:<

.9=
(/

:/
8+

,/
09

>?
@

!"#$%
!&"#$%'

Fig. 4. Fraction of harmful prefetches. In each application, the
bars from left to right are for 1 through 16 clients.

!" !# !$ !% !& !' !( !)

!"
!#
!$
!%
!&
!'
!(
!)

"

$

&

(

*

#"

#$

+
,-
.
/0
1
2
31
43
5
-
,6
47
83
!
,9
49
/.
:
9
;

<449./9=3>!?

!,949/.:02@3>!?
!" !# !$ !% !& !' !( !)

!"
!#
!$
!%
!&
!'
!(
!)

"

#

$

%

&

'

(

)

*

+

#"

,
-.
/
01
2
3
42
54
6
.
-7
58
94
!
-:
5:
0/
;
:
<

=55:/0:>4?!@

!-:5:0/;13A4?!@ !" !# !$ !% !& !' !( !)

!"
!#
!$
!%
!&
!'
!(
!)

"

#

$

%

&

'

(

)

*

+

#"

,
-.
/
01
2
3
42
54
6
.
-7
58
94
!
-:
5:
0/
;
:
<

=55:/0:>4?!@

!-:5:/0;13A4?!@

(a) (b) (c)

!" !# !$ !% !& !' !( !)

!"
!#
!$
!%
!&
!'
!(
!)

"

#

$

%

&

'

(

)

*

+

#"

,
-.
/
01
2
3
42
54
6
.
-7
58
94
!
-:
5:
0/
;
:
<

=55:/0:>4?!@

!-:5:0/;13A4?!@ !" !# !$ !% !& !' !( !)

!"
!#
!$
!%
!&
!'
!(
!)

"

#

$

%

&

'

(

)

*

+

#"

,
-.
/
01
2
3
42
54
6
.
-7
58
94
!
-:
5:
0/
;
:
<

=55:/0:>4?!@

!-:5:0/;13A4?!@ !" !# !$ !% !& !' !( !)

!"
!#
!$
!%
!&
!'
!(
!)

"

#

$

%

&

'

(

)

*

+
,-
.
/0
1
2
31
43
5
-
,6
47
83
!
,9
49
/.
:
9
;
3<
=
>

?449./9@3A!B

!,949/.:02C3A!B

(d) (e) (f)

Fig. 5. Statistics collected at different points during the course of execution of our four applications. Each bar-chart shows a distribution of the harmful I/O
prefetches for the execution that uses 8 CPUs. (a) and (b) are from mgrid; (c) is from neighbor m; (d) and (e) are from cholesky; and (f) is from med. The
white bars indicate interesting patterns.

of harmful prefetches (more than 85%). The third pattern
– shown in (c) – is taken from one of the last epochs of
neighbor m, and demonstrates an entirely different behavior
than the previous two. In particular, here we observe that
one of the CPUs (P5) is the victim of most of the harmful
prefetches. The next two bar-charts in Figure 5 are taken from
cholesky and capture two representative behaviors (one from
the beginning of the application execution and one towards
the end). In (d), we observe two interesting patterns. First,
most of the harmful prefetches are issued by one of the CPUs
(P7), and second, among all CPUs, P5 is the one that is
affected most by the harmful I/O prefetches. The graph in
(e) indicates a more clustered behavior. Specifically, there are
a few CPUs which perform harmful prefetches that affect
another group of CPUs. Also, there is another group of CPUs
that are affected greatly by harmful I/O prefetches. Finally,
the last bar-chart (f) is taken from the execution of med and
shows that two CPUs (P2 and P5) are affected from most of
the harmful prefetches. We need to mention at this point that

the patterns shown in Figure 5 are not isolated, infrequently-
occurring patterns. They in fact occur very frequently during
the course of execution. For example, the first 13 epochs in
the beginning of the execution of mgrid exhibit similar pattern
to the one shown in (a). Similarly, 8 consecutive patterns in
cholesky are very similar to the one given in (d), and med
has many patterns similar to that shown in (f). Therefore, if
one could take advantage of these patterns during execution,
significant performance gains can be achieved. In the rest of
this paper, we present two optimization schemes that exploit
these harmful prefetch patterns, and quantify the performance
benefits they bring in our applications.

V. OUR SCHEMES

A. Prefetch Throttling and Data Pinning

Based on the discussion in the previous section, we propose
two schemes for improving the behavior of I/O prefetching:
“prefetch throttling” and “data pinning.” In this section, we
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Fig. 5. Statistics collected at different points during the course of execution of our four applications. Each bar-chart shows a distribution of the harmful I/O
prefetches for the execution that uses 8 CPUs. (a) and (b) are from mgrid; (c) is from neighbor m; (d) and (e) are from cholesky; and (f) is from med. The
white bars indicate interesting patterns.

of harmful prefetches (more than 85%). The third pattern
– shown in (c) – is taken from one of the last epochs of
neighbor m, and demonstrates an entirely different behavior
than the previous two. In particular, here we observe that
one of the CPUs (P5) is the victim of most of the harmful
prefetches. The next two bar-charts in Figure 5 are taken from
cholesky and capture two representative behaviors (one from
the beginning of the application execution and one towards
the end). In (d), we observe two interesting patterns. First,
most of the harmful prefetches are issued by one of the CPUs
(P7), and second, among all CPUs, P5 is the one that is
affected most by the harmful I/O prefetches. The graph in
(e) indicates a more clustered behavior. Specifically, there are
a few CPUs which perform harmful prefetches that affect
another group of CPUs. Also, there is another group of CPUs
that are affected greatly by harmful I/O prefetches. Finally,
the last bar-chart (f) is taken from the execution of med and
shows that two CPUs (P2 and P5) are affected from most of
the harmful prefetches. We need to mention at this point that

the patterns shown in Figure 5 are not isolated, infrequently-
occurring patterns. They in fact occur very frequently during
the course of execution. For example, the first 13 epochs in
the beginning of the execution of mgrid exhibit similar pattern
to the one shown in (a). Similarly, 8 consecutive patterns in
cholesky are very similar to the one given in (d), and med
has many patterns similar to that shown in (f). Therefore, if
one could take advantage of these patterns during execution,
significant performance gains can be achieved. In the rest of
this paper, we present two optimization schemes that exploit
these harmful prefetch patterns, and quantify the performance
benefits they bring in our applications.

V. OUR SCHEMES

A. Prefetch Throttling and Data Pinning

Based on the discussion in the previous section, we propose
two schemes for improving the behavior of I/O prefetching:
“prefetch throttling” and “data pinning.” In this section, we

5

!"#

!$

#

$

"#

"$

%#

%$

&#

&$

'#

()*+, -./01234 51+).6/*7( (1,

8
1*

9/
*(

:5
-1

;<(
=*

/>
1(

15
?;@

A
B

!"#$%

!&"#$%'

Fig. 3. Percentage improvements in total execution cycles
due to I/O prefetching (over the no-prefetch case). In each
application, the bars from left to right are for 1 through 16
clients.

!

"

#!

#"

$!

$"

%!

&'()* +,-./012 3/)',4-(5& &/*

6
(7

+8
)-

39
-:

9;
7(

&
:<

.9=
(/

:/
8+

,/
09

>?
@

!"#$%
!&"#$%'

Fig. 4. Fraction of harmful prefetches. In each application, the
bars from left to right are for 1 through 16 clients.

!" !# !$ !% !& !' !( !)

!"
!#
!$
!%
!&
!'
!(
!)

"

$

&

(

*

#"

#$

+
,-
.
/0
1
2
31
43
5
-
,6
47
83
!
,9
49
/.
:
9
;

<449./9=3>!?

!,949/.:02@3>!?
!" !# !$ !% !& !' !( !)

!"
!#
!$
!%
!&
!'
!(
!)

"

#

$

%

&

'

(

)

*

+

#"

,
-.
/
01
2
3
42
54
6
.
-7
58
94
!
-:
5:
0/
;
:
<

=55:/0:>4?!@

!-:5:0/;13A4?!@ !" !# !$ !% !& !' !( !)

!"
!#
!$
!%
!&
!'
!(
!)

"

#

$

%

&

'

(

)

*

+

#"

,
-.
/
01
2
3
42
54
6
.
-7
58
94
!
-:
5:
0/
;
:
<

=55:/0:>4?!@

!-:5:/0;13A4?!@

(a) (b) (c)

!" !# !$ !% !& !' !( !)

!"
!#
!$
!%
!&
!'
!(
!)

"

#

$

%

&

'

(

)

*

+

#"

,
-.
/
01
2
3
42
54
6
.
-7
58
94
!
-:
5:
0/
;
:
<

=55:/0:>4?!@

!-:5:0/;13A4?!@ !" !# !$ !% !& !' !( !)

!"
!#
!$
!%
!&
!'
!(
!)

"

#

$

%

&

'

(

)

*

+

#"

,
-.
/
01
2
3
42
54
6
.
-7
58
94
!
-:
5:
0/
;
:
<

=55:/0:>4?!@

!-:5:0/;13A4?!@ !" !# !$ !% !& !' !( !)

!"
!#
!$
!%
!&
!'
!(
!)

"

#

$

%

&

'

(

)

*

+
,-
.
/0
1
2
31
43
5
-
,6
47
83
!
,9
49
/.
:
9
;
3<
=
>

?449./9@3A!B

!,949/.:02C3A!B

(d) (e) (f)

Fig. 5. Statistics collected at different points during the course of execution of our four applications. Each bar-chart shows a distribution of the harmful I/O
prefetches for the execution that uses 8 CPUs. (a) and (b) are from mgrid; (c) is from neighbor m; (d) and (e) are from cholesky; and (f) is from med. The
white bars indicate interesting patterns.

of harmful prefetches (more than 85%). The third pattern
– shown in (c) – is taken from one of the last epochs of
neighbor m, and demonstrates an entirely different behavior
than the previous two. In particular, here we observe that
one of the CPUs (P5) is the victim of most of the harmful
prefetches. The next two bar-charts in Figure 5 are taken from
cholesky and capture two representative behaviors (one from
the beginning of the application execution and one towards
the end). In (d), we observe two interesting patterns. First,
most of the harmful prefetches are issued by one of the CPUs
(P7), and second, among all CPUs, P5 is the one that is
affected most by the harmful I/O prefetches. The graph in
(e) indicates a more clustered behavior. Specifically, there are
a few CPUs which perform harmful prefetches that affect
another group of CPUs. Also, there is another group of CPUs
that are affected greatly by harmful I/O prefetches. Finally,
the last bar-chart (f) is taken from the execution of med and
shows that two CPUs (P2 and P5) are affected from most of
the harmful prefetches. We need to mention at this point that

the patterns shown in Figure 5 are not isolated, infrequently-
occurring patterns. They in fact occur very frequently during
the course of execution. For example, the first 13 epochs in
the beginning of the execution of mgrid exhibit similar pattern
to the one shown in (a). Similarly, 8 consecutive patterns in
cholesky are very similar to the one given in (d), and med
has many patterns similar to that shown in (f). Therefore, if
one could take advantage of these patterns during execution,
significant performance gains can be achieved. In the rest of
this paper, we present two optimization schemes that exploit
these harmful prefetch patterns, and quantify the performance
benefits they bring in our applications.

V. OUR SCHEMES

A. Prefetch Throttling and Data Pinning

Based on the discussion in the previous section, we propose
two schemes for improving the behavior of I/O prefetching:
“prefetch throttling” and “data pinning.” In this section, we
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Helper Thread Based I/O Prefetching
• Our approach obtains inter-thread data sharing information using 

profiling and divides parallel threads into clusters and assigns a 
separate (customized) I/O prefetcher thread for each cluster
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Figure 4: Data access patterns of four I/O-intensive applications obtained through profiling. (a) HF (b) 3D-vis (c) Cholesky (d)

Mgrid. In 3D-vis, the pattern shown repeats itself multiple times. In HF, only the most time-consuming portion of the code is shown.

The ovals are used to capture sample patterns for which we can use a common prefetcher (one per oval).

Our third set of results study the I/O access patterns of our ap-
plications focusing on shared data. Figure 4(a) illustrates an in-
teresting scenario when an application (HF) is executed using four
CPUs. The x-axis of this figure denotes the execution progress
and the y-axis captures the addresses of the data elements. In ob-
taining this graph, the total application execution period is divided
into 500 epochs, and the addresses of the accessed data elements
are recorded. We can identify two distinct execution phases in this
graph, which correspond to two different functions in the applica-
tion code that consume nearly 95% of the total application execu-
tion time. In the first execution phase (function), CPU0 and CPU2
share the same small set of data elements and similarly CPU1 and
CPU3 access a lot of common data elements, which constitute a
small subset of the total address space. In comparison, in the sec-
ond phase which starts around epoch 270, a much larger set of data
are accessed (note that some of these data are accessed by more
than one CPU; however, the total data range is too large). We be-
lieve that an I/O prefetching strategy can be tuned by exploiting this
execution profile. Specifically, for the first phase of this application,
it may be a good idea to use an I/O prefetcher (thread) for CPU0 and
CPU2 and another I/O prefetcher for CPU1 and CPU3. In this case,
the application threads running on CPU0, CPU1, CPU2 and CPU3
do not perform any I/O prefetching (the prefetch threads perform it
on behalf of them). Note that, in this phase, since CPU0 and CPU2
(and similarly CPU1 and CPU3) share a lot of data between them,
allocating a common prefetcher will cut the number of prefetches
and reduce the chances for harmful prefetches. On the other hand,
in the second phase, it may be more beneficial to employ a sep-
arate I/O prefetcher for each of the CPUs (each I/O prefetcher in
this phase can be integrated with its associated application thread,
as in [33]). Figure 4(b) shows the execution profile of another I/O-
intensive application (3D-vis). In this application, we observe even
more phases with interesting data sharing patterns. For instance,
between epochs 25 and 90 (which corresponds to a large loop nest
in the application), all four CPUs access a small set of data and can
potentially share the same I/O prefetcher. A similar behavior can
also be observed between epochs 320 and 430. In these portions,

it may be a good idea to employ only a single I/O prefetcher that
prefetches data on behalf of all four CPUs. On the other hand, be-
tween epochs 450 and 500, it may be a good idea to have a single
I/O prefetcher devoted to CPU0 and CPU3; the remaining CPUs
can have their own private prefetchers. The graphs in Figures 4(c)
and 4(d) present the execution profiles for our remaining two ap-
plications and one can make similar observations from these plots
as well. Although not presented here, we also observed similar
clustering patterns when larger number of CPUs are used.
Considering the results presented in Figures 2 through 4, we can

reach the following conclusions. The inter-CPU data sharing pat-
tern for a given I/O-intensive application varies significantly during
the course of execution. Given the poor performance of indepen-
dent I/O prefetching in large CPU counts (wherein each CPU is-
sues its I/O prefetches independently), it is clear that we have to
take inter-CPU data sharing patterns into account to achieve ac-
ceptable program performance through I/O prefetching. Instead of
allowing each CPU to perform I/O prefetching independently (i.e.,
execute I/O prefetcher threads in addition to application threads),
one option is to reserve a couple of CPUs to do prefetching on be-
half of the others which execute application code without issuing
any prefetch call. Based on our results above (Figures 2 and 3),
we know that this is unlikely to hurt scalability of the parallel ap-
plication. In the rest of this paper, we present and experimentally
evaluate such an adaptive I/O prefetching scheme which modulates
the number of the threads to use for I/O prefetching based on the
inter-thread data sharing patterns.

3. COMPILER-DIRECTED I/O PREFETCH-

ING
While there exist several I/O prefetching algorithms published

in literature [27, 2, 33, 36, 19, 11, 15], the one used in this work
is inspired by the work done by Mowry et al [33]. The original al-
gorithm has actually been proposed for improving hardware cache
behavior for memory resident data sets [32], and has later been
extended to implement I/O prefetching targeting virtual memory

Computation threadsHelper thread

Loop Nest
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…… ……
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Helper Thread Based I/O Prefetching
Our approach obtains inter-thread data sharing information using 
profiling and divides parallel threads into clusters and assigns a separate 
(customized) I/O prefetcher thread for each cluster
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Figure 4: Data access patterns of four I/O-intensive applications obtained through profiling. (a) HF (b) 3D-vis (c) Cholesky (d)

Mgrid. In 3D-vis, the pattern shown repeats itself multiple times. In HF, only the most time-consuming portion of the code is shown.

The ovals are used to capture sample patterns for which we can use a common prefetcher (one per oval).

Our third set of results study the I/O access patterns of our ap-
plications focusing on shared data. Figure 4(a) illustrates an in-
teresting scenario when an application (HF) is executed using four
CPUs. The x-axis of this figure denotes the execution progress
and the y-axis captures the addresses of the data elements. In ob-
taining this graph, the total application execution period is divided
into 500 epochs, and the addresses of the accessed data elements
are recorded. We can identify two distinct execution phases in this
graph, which correspond to two different functions in the applica-
tion code that consume nearly 95% of the total application execu-
tion time. In the first execution phase (function), CPU0 and CPU2
share the same small set of data elements and similarly CPU1 and
CPU3 access a lot of common data elements, which constitute a
small subset of the total address space. In comparison, in the sec-
ond phase which starts around epoch 270, a much larger set of data
are accessed (note that some of these data are accessed by more
than one CPU; however, the total data range is too large). We be-
lieve that an I/O prefetching strategy can be tuned by exploiting this
execution profile. Specifically, for the first phase of this application,
it may be a good idea to use an I/O prefetcher (thread) for CPU0 and
CPU2 and another I/O prefetcher for CPU1 and CPU3. In this case,
the application threads running on CPU0, CPU1, CPU2 and CPU3
do not perform any I/O prefetching (the prefetch threads perform it
on behalf of them). Note that, in this phase, since CPU0 and CPU2
(and similarly CPU1 and CPU3) share a lot of data between them,
allocating a common prefetcher will cut the number of prefetches
and reduce the chances for harmful prefetches. On the other hand,
in the second phase, it may be more beneficial to employ a sep-
arate I/O prefetcher for each of the CPUs (each I/O prefetcher in
this phase can be integrated with its associated application thread,
as in [33]). Figure 4(b) shows the execution profile of another I/O-
intensive application (3D-vis). In this application, we observe even
more phases with interesting data sharing patterns. For instance,
between epochs 25 and 90 (which corresponds to a large loop nest
in the application), all four CPUs access a small set of data and can
potentially share the same I/O prefetcher. A similar behavior can
also be observed between epochs 320 and 430. In these portions,

it may be a good idea to employ only a single I/O prefetcher that
prefetches data on behalf of all four CPUs. On the other hand, be-
tween epochs 450 and 500, it may be a good idea to have a single
I/O prefetcher devoted to CPU0 and CPU3; the remaining CPUs
can have their own private prefetchers. The graphs in Figures 4(c)
and 4(d) present the execution profiles for our remaining two ap-
plications and one can make similar observations from these plots
as well. Although not presented here, we also observed similar
clustering patterns when larger number of CPUs are used.
Considering the results presented in Figures 2 through 4, we can

reach the following conclusions. The inter-CPU data sharing pat-
tern for a given I/O-intensive application varies significantly during
the course of execution. Given the poor performance of indepen-
dent I/O prefetching in large CPU counts (wherein each CPU is-
sues its I/O prefetches independently), it is clear that we have to
take inter-CPU data sharing patterns into account to achieve ac-
ceptable program performance through I/O prefetching. Instead of
allowing each CPU to perform I/O prefetching independently (i.e.,
execute I/O prefetcher threads in addition to application threads),
one option is to reserve a couple of CPUs to do prefetching on be-
half of the others which execute application code without issuing
any prefetch call. Based on our results above (Figures 2 and 3),
we know that this is unlikely to hurt scalability of the parallel ap-
plication. In the rest of this paper, we present and experimentally
evaluate such an adaptive I/O prefetching scheme which modulates
the number of the threads to use for I/O prefetching based on the
inter-thread data sharing patterns.

3. COMPILER-DIRECTED I/O PREFETCH-

ING
While there exist several I/O prefetching algorithms published

in literature [27, 2, 33, 36, 19, 11, 15], the one used in this work
is inspired by the work done by Mowry et al [33]. The original al-
gorithm has actually been proposed for improving hardware cache
behavior for memory resident data sets [32], and has later been
extended to implement I/O prefetching targeting virtual memory
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